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Figure 1: Example “walk-through” using a subset of Gait Gestures for AR interaction: a user wearing AR glasses is walking

to work when they decide to order a coffee on the way; (a) they slow-step during a stride to ‘activate’ the system; (b) as they

continue to walk, a ‘list’ of applications slowly scrolls by synchronized with each stride; (c) they ‘select’ the coffee app by

brushing one foot against the other mid-stride; (d) following the instruction on the ‘menu’ buttons, they choose the serving

size item with a right-footed big-step; (e) finally, they brush their feet together to ‘confirm’ the order. See section 6 for more

examples of gait gesture interactions.

ABSTRACT

Walking is a cyclic pattern of alternating footstep strikes, with each

pair of steps forming a stride, and a series of strides forming a gait.

We conduct a systematic examination of different kinds of inten-

tional variations from a normal gait that could be used as input

actions without interrupting overall walking progress. A design

space of 22 candidate Gait Gestures is generated by adapting previ-

ous standing foot input actions and identifying new actions possible

in a walking context. A formative study (n=25) examines movement

easiness, social acceptability, and walking compatibility with foot

movement logging to calculate temporal and spatial characteristics.

Using a categorization of these results, 7 gestures are selected for a

wizard-of-oz prototype demonstrating an AR interface controlled

by Gait Gestures for ordering food and audio playback while walk-

ing. As a technical proof-of-concept, a gait gesture recognizer is

developed and tested using the formative study data.
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1 INTRODUCTION

The average American adult takes around 5,000 steps each day

[8], and active commuting by walking has obvious health benefits

[46]. Many people walk throughout their day, such as going to a

meeting in another building, getting coffee, meeting friends for

dinner, enjoying trails in parks, running errands, and more. During

these walks, there is often a need to accomplish small tasks like

ordering food ahead, controlling music playback, and sending short

text messages (e.g. ‘be there soon”). Currently, most people use a

smartphone, but touch input while walking is error prone [20] and

looking down at a phone screen while walking is hazardous [2].

So, a typical strategy is to stop walking for a moment, retrieve the

phone, perform the task, then put the phone away and continue

walking . . . but we ask: Is there a better way to accomplish small tasks

without interrupting a walk?

New developments in mobile augmented reality (AR) avoid the

need to look down at a phone screen, but AR input while walk-

ing remains an open problem. Speech has issues with background

noise, privacy, and social acceptability [51]. Eye-tracking requires

overloading gaze direction for both cursor control and walking

navigation, creating a safety issue and being prone to fatigue [15].

Using hand-based input may not be practical when hands are cold

or covered in winter, or when carrying something. Additionally,

common hand gestures, such as pinch, are slower and more difficult

to perform when walking [59].

Instead, our approach is to leverage the way you walk to provide

input to AR. A key observation is that if someone is already going to

be walking for several minutes, the time to accomplish a small task

is less critical than the ability to do so without interrupting the walk.
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Walking has a natural rhythm of steps, called strides in a gait cycle,

and our approach is to slightly alter these stride movements to

interact with an AR interface over time. AR headsets are becoming

more portable and we expect they could easily support 6 DOF

foot tracking relative to the body (e.g. using an egocentric camera

approach [16, 43, 52]).

Our work relates to previous research on foot input, such as

using foot taps on targets [34], tilting the heel or ankle to trigger

events [3], and kicking with variable direction or velocity [13].

However, it is important to note that almost all previous work as-

sumes a stationary standing or seated posture. There has been some

exploration of foot input when walking. Müller et al. [36] propose

using lateral shifts when walking to follow a surface projected “line”

to control modes and trigger events (e.g. stepping into a virtual

sub-path would select a system option). However, this changes the

trajectory of a walk, it assumes high quality environment mapping,

and how the method is activated and deactivated was not discussed.

Most similar to our work are Yamamoto et al. [57] and Smus and

Kostakos [50]. Both propose two running gestures, a lateral side

step and “skipping” (two consecutive steps with the same foot).

However, a running gait is very different than walking and a ges-

ture like skipping is not very compatible. Moreover, these short

papers only report initial results with very small studies.

We conduct a systematic examination of intentional variations

from a normal walking gait that could be used as input actions

without interrupting overall walking progress. We refer to these as

“Gait Gestures”. To construct a candidate set of gestures, we identify

foot-based gestures in the existing literature that appear compatible

with forward body movement and walking ergonomics, and we add

new time-based foot gestures specific to walking. With a candidate

set of 22 Gait Gestures, we conduct a 25-person formative study

to examine suitability in terms of perceived walking compatibility,

movement easiness, and social acceptability. Based on the results,

7 Gait Gestures are incorporated into a prototype interaction de-

sign to demonstrate how they can control three common types

of mobile applications for music, food ordering, and voice calls.

Using Wizard-of-Oz recognition and a portable pass-through AR

headset, we conduct a usability evaluation in which people use Gait

Gestures with our interaction design as they walk an indoor circuit

of hallways. Finally, as a technical proof-of-concept, we developed

a gait gesture recognizer tested on the formative study data. For

the 7 gestures used in our interaction design and a normal walking

class to test false-positive performance, the recognizer achieves

above 92% accuracy with high precision and recall.

In sum, we contribute a new foot gesture space to perform in-

put actions while walking. We explore suitable gestures and their

feasibility using a formative study, an interaction prototype, and a

proof-of-concept recognizer. Data and code are available
1
.

2 RELATEDWORK

We focus our review on foot-based input followed by general work

exploring challenges and approaches to enable input while walking.

2.1 Foot-based Input

The origins of using foot input for controlling an interactive system

can be dated back to operating machines and instruments with

1
Study data and analysis code: https://github.com/exii-uw/gait-gestures

pedals [7]. Early examples of foot input for computers focused on

cursor positioning and selection methods, such as pioneering work

by Pearson and Weiser [40, 41].

Related to these early approaches, many previous systems and

studies use feet to tap on a target. Crossan et al. [9] investigate

foot tapping for mobile phone input, for example, invoking menu

commands through a single or double-foot tap when standing still.

They show it can be as accurate as pulling out a phone from a

pocket and performing touch interaction. Paelke et al. [39] demon-

strate a technique to interact with a menu on a mobile device using

standing kicks. Using a downward-facing camera on the device, the

system detects the foot colliding with targets overlaid from a view

of the floor. When standing and wearing an AR headset, Müller et al.

[34] use foot taps on targets to prevent arm fatigue and avoid social

disturbance with voice input. Their evaluation compares a direct

mapping, where the foot taps on a floor target, with an indirect

mapping, where the foot taps on floor areas mapped to a plane of

targets floating in the air. Saunders and Vogel [44] also explore in-

direct target selection while standing, but with variations like heel

taps, toe taps, and kicks. They later apply this technique to operate

a desktop computer at a standing desk [45]. Felberbaum and Lanir

[10] elicit mappings for various foot tapping and dragging move-

ments to system commands. They include scenarios when standing

or sitting in front of a computer screen and on an interactive floor.

2.1.1 Gestural Foot Input. Other work uses foot and body move-

ments that could be considered simple gestures. Han et al. [13]

explore kick direction and velocity as input for mobile devices,

Kadobayashi et al. [19] use single directional steps as input for

a large wall display, and Xu et al. [56] compare single directional

steps with hand gestures as input for headset AR. Schmidt et al. [47]

use foot-based tangibles to improve the affordance of foot-based

gestures. Scott et al. [48] developed a pocket-based sensing system

to detect more subtle foot movements like plantar flexion and heel

rotation as input for mobile devices. Müller et al. [35] investigate

1-D selection tasks with toe movement, including flexion and ex-

tension. A study by Alexander et al. [3] elicits user-defined foot

gestures and their mappings to various GUI commands.

In every work discussed so far, the user is essentially stationary

when performing foot input. Even when taking small direction

steps, as in Kadobayashi et al., the user returns to a neutral position.

Perhaps a conceptual step closer to using foot input while walking,

are walking-in-place (WIP) methods for locomotion in virtual envi-

ronments. Methods include lifting only the heel off the ground [38],

directional steps and foot-drags [24], side-steps [54], and using the

amplitude of WIP movements to control locomotion speed [22].

While WIP techniques share some resemblance to a gait cycle, the

explicit goal of WIP is not to actually walk through physical space

but to restrict movement to a small fixed area.

2.1.2 Foot Input while Running. Yamamoto et al. [57] and Smus

and Kostakos [50] both propose variations of a running gait cycle

to provide input to a music player. They define two gestures, a

lateral side step and “skipping” (two consecutive steps with the

same foot). Each gesture can be performed with the left or right

foot, enabling four different input actions. These are short papers

published as adjunct proceedings, suggesting preliminary work, but

small studies (𝑛 = 4 [57] and 𝑛 = 7 [50]) compared this approach

https://github.com/exii-uw/gait-gestures
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to a handheld touchscreen device and headphone buttons with

promising initial results.

Compared to walking, running entails a significantly higher

speed and more vigorous gait cycle. In a running gait cycle, only

one foot touches the ground at the same time and there is a phase

when both feet are in the air. This is very different to the speed

and stability of a walking gait cycle which has a phase where both

feet are on the ground at the same time and one foot is contacting

the ground at all times. The increased stability of a walk cycle

enables a wider range of foot gestures, and makes high-energy,

heterogeneous gestures like skipping unsuitable.

2.2 Other Mobile Input While Walking

Mobile device input while walking has been an active research

topic, with a frequent goal of reducing side effects in terms of

input stability and safety. Kane et al. [20] show how increasing text

and button sizes can make touchscreen phone input more stable

when walking, and Goel et al. [12] show how footstep data can

be used to correct touchscreen input displacement when typing

while walking. Several works explore systems to avoid colliding

with obstacles when focused on a phone screen while walking.

For example, Hincapié-Ramos and Irani [14] add visual warnings

in the periphery of the screen using a depth camera mounted to

the back of a phone. Ahn and Kim [2] provide the same style of

warning using an ultrasonic sensor. The NotifyEye [31] system

routes notifications to a lightweight AR headset, reducing the need

to look at a phone screen while walking. All these systems assume

touchscreen input on a phone.

Alternative input methods can be used when walking, but these

may also have stability issues. For instance, Zhou et al. [59] found

that performing a pinch gesture while walking takes 570 ms longer

than when stationary. Moreover, the hands may not even be avail-

able due to cold weather or when carrying objects. Researchers

have proposed novel hands-free input methods that could be used

when walking. For example, tongue and lip movements [18] or

silent speech [25], but they require specialized tracking equipment

such as electrode arrays or dental retainers with capacitive touch

sensors. Using gaze input for precise eye-based cursor control

when walking can distract the user from monitoring obstacles in

their path, posing a safety risk not unlike looking down at a phone.

With the advancement of portable AR headsets, researchers have

investigated AR interaction while walking. Lages and Bowman

[28] explore different adaptation strategies for interface transitions

and placement. Müller et al. [36] use lateral shifts when walking

for discrete input selection, with different options rendered on

the ground as parallel sub-paths. Kumar et al. [27] combine this

technique with eye movement for unlocking AR headsets.

Unlike prior research, our approach eliminates the need for

target-dependent interfaces, altering paths to trigger commands,

highly specialized sensors, or utilizing other body parts for input.

3 GAIT GESTURE SPACE

Awalking gait has different events and phases. There are variations

in terminology [23, 37, 42], but they commonly refer to the same

foot and body action. We base our terms on those summarized by

Kharb et al. [23] (Figure 2).

A strike is when the heel touches the ground (Kharb et al. use

the term “initial contact”) and lift is when the toe or the foot leaves

the ground (Kharb et al. use the term “toe off”). The stance is the

phase when the foot is in contact with the ground after a strike,

ending with a lift. The stance can be further divided into four stages:

loading, when the foot first takes the weight; mid stance, from the

opposite foot lift until the heel begins to rise; terminal stance, until

the opposite foot makes contact; and finally pre swing, until the

foot lift. The swing is the phase between the lift and before the

next strike. During the swing, the foot is in the air. The swing

can be further divided into three stages: the initial swing until the

two feet are adjacent, followed by the mid swing until the tibia is

vertical, and finally the terminal swing until the strike. A stride is

the combination of stance and swing phases, starting and ending

with a strike by the same foot. A key characteristic, other than

stride duration, is the stride length. Finally, the gait is the cycle of

strides alternating between feet.

stance

stride
strike lift

swing
strike

initialmidload terminal pre mid terminal

Figure 2: Gait cycle of right foot with strike event, stance

phase, lift event, and swing phase that form a single stride.

Stance and swing are further divided into stages.

3.1 Requirements and Sources

We focus on foot actions that are target-independent. Previous work

proposing foot input while standing or sitting frequently adopts a

2D target selection paradigm [34]. This is typically achieved in two

ways: direct selection of targets displayed on the floor (e.g. [5]) or by

controlling a “foot cursor” for indirect selection of targets displayed

somewhere other than the floor (e.g. on a desktop monitor [45]).

We recognize direct input is possible while walking by stepping

on targets, considering playing a slow and calm version of the

children’s “hop-scotch” sidewalk game. But, this assumes strict

control of targets projected in the environment, something that may

be technically feasible with modern AR headsets, but in practical

terms, choosing where to position targets relative to the person

as they walk in a dynamic street environment is very difficult.

Consider street hazards to avoid, surface and colour variation to

compensate for, and how to position a target to be simultaneously

easy to step on but easy to avoid.

For these reasons, our gesture space is composed of target-

independent lower-body actions. This removes technical require-

ments for accurate projection mapping and challenges with direct

target selection in a street environment. Each gesture can be inter-

preted by a system as an event, which then triggers an action based

on the current system state. Our intuition was also that focusing on

gestural actions would make Gait Gestures more compatible with

walking than using a target selection paradigm.

To generate a set of candidate foot and lower body gestural

actions that are compatible with walking, we first examined prior
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TAP-IN TAP-ACROSS

SWING-IN SWING-OUT

BRUSHKICK-IN KICK-OUT

TAP-BEHIND

TAP-AHEAD HEEL

KICK-AHEAD

HIGH-STEP SMALL-STEP BIG-STEPBEND-BEHIND DRAG-AHEADDRAG-BEHIND

FAST-STEPSLOW-STEP NORMAL

TAP-ROTATE-OUT TAP-ROTATE-IN

TAP-OUT

(a) swing translation variations

(c) swing rotation variations

(b) stance translation variations

(d) stance rotation variations

(e) stride temporal variations

Figure 3: Gait gesture space grouped by variation characteristics.

work using foot gestures when seated or standing (see previous

section). Foot actions were considered for inclusion in our gesture

space if: (1) they are not dependent on a specific floor target location;

(2) they do not require large shifts in body centre of gravity; (3) they

do not introduce large deviations from a predominately forward

direction; (4) they do not lift both feet of the air at once; and (5) they

do not deviate far from how a foot normally contacts the ground

when walking.

For example, the body weight shifting actions from [54, 56] do

not satisfy requirement 2, and most backward tapping or step-back

motions used in walk-in-place or swing-in-place virtual reality lo-

comotion techniques [4, 24] do not satisfy requirement 3. However,

many previous foot actions, such as tapping techniques [34] and

kicking motions [13, 39], can be integrated into a gait cycle by

eliminating returning the foot to its original position to stand in

place. Besides selecting candidate gestures from previous sitting or

standing foot input systems, the requirements also exclude some

potential foot actions and tighten the design space. For example,

a potential gait input can be utilizing foot eversion or inversion.

When seated, there is little load on the feet so these kinds of actions

are possible, but such changes to the loading of the foot during the

stance would make walking difficult, and even cause injury.

In addition, we identified dimensions associated with higher-

level aspects of walking that have not been explored before, but

satisfy our requirements. We propose slow-step and fast-step

gestures to leverage temporal differences in stride and small-step

and big-step to explore variation in stride length. Neither of these

dimensions would apply to standing foot gestures.

3.2 Candidate Gestures

The final set of 22 candidate gestures is visualized in Figure 3. This

gesture space is partially derived from compatible foot gestures in

Velloso et al. [53, page 21]. Four of our gesture categories cover

spatial variations, separated by the swing and stance portions of

a stride over two movement axes: lateral—medial, dorsiflexion—

plantarflexion. Temporal variation is a new category we introduce.

Organized by movement type, we provide brief descriptions

and establish a concise name for each gesture to enable efficient

reference in later sections. Most gestures can be characterized by

(1) whether its primary movement variation occurs during the

swing or stance phases and (2) whether the movement it introduces

is primary translation or rotation. Note that all gestures can be

performed with either foot.

During Stance, with Translation.

• tap-out: Position the strike at a lateral position compared to a

normal stride, away from the opposite foot.

• tap-across: Position the strike at a medial position compared to

a normal stride, in front of the opposite foot.
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• tap-in: Position the strike at a medial position compared to a

normal stride, closer to the opposite foot.

• drag-ahead: In the mid-stance portion, slide the foot along the

ground ahead of the body.

• drag-behind: In the pre-lift portion, slide the toe or ball of the

foot along the ground behind the body.

During Stance, with Rotation.

• tap-rotate-out: Position the strike with more lateral rotation

than a normal stride, pointing away from the opposite foot.

• tap-rotate-in: Position the strike with more medial rotation

than a normal stride, pointing towards the opposite foot.

During Swing, with Translation.

• big-step: Increase the swing distance to make a longer stride

length compared to a normal stride.

• small-step: Decrease the swing distance to make a shorter stride

length compared to a normal stride.

• brush: In the mid-swing portion, slightly touch the opposite foot

with the swinging foot.

• tap-behind: During the initial swing stage, briefly touch the floor

with the tip of the toe and then continue with the mid swing

stage.

• kick-in: Perform a kicking action in the medial direction dur-

ing mid and terminal swing portion. A kicking action is a brief

extension beyond the normal swing angle, then returning to a

normal swing position and trajectory.

• kick-out: Perform a kicking action in the lateral direction during

the mid and terminal stages of the swing portion.

• kick-ahead: Perform a kicking action in the forward direction

during the mid and terminal swing portion.

• high-step: Raise the foot higher than a normal stride during

the mid swing portion.

• bend-behind: Bend the knee to raise the foot higher than usual

behind the body during the initial swing portion.

During Swing, with Rotation.

• tap-ahead: During the terminal swing, rotate the foot (plan-

tarflexion) so that the toe strikes the floor first instead of the

heel.

• heel: During the terminal swing, rotate the entire foot, so that it

incorporates more dorsiflexion on strike than a normal stride.

• swing-out: During the mid and terminal swing, rotate the foot

more laterally than a normal stride during the swing phase.

• swing-in: During the mid and terminal swing, rotate the foot

more medially than a normal stride during the swing phase.

Temporal gesture.

• slow-step: Take a slower stride than a normal stride.

• fast-step: Take a faster stride than a normal stride.

It is important to note that we group gestures into stance or swing

categories to convey the main characteristics and the primary phase

affected. In practice, a gesture is likely to impact the other phase

as well, for instance, executing a tap-in might slightly affect the

terminal stage of the preceding swing.

4 2 12
10

1

(b)

(a)

(c)

Figure 4: Study setting: (a) top-down diagram showing walk-

ing path in blue with red lines representing thresholds where

a chime played instructing the participant to perform a ges-

ture on next stride, two triangles are webcam positions; (b)

view of participant (walking path and gesture threshold su-

perimposed for illustration, no lines were visible to partici-

pants); (c) Lighthouse trackers attached to footwear.

4 STUDY

The goal of this study is to evaluate the suitability of the 22 Gait Ges-

tures. The study is conducted in a lab for internal validity, high qual-

ity tracking, and logistical practicality. The participant walks along

a straight path, and performs a gesture twice after a threshold dis-

tance signalled by a chime. They repeat this twice for each gesture

and for each foot, and rate each gesture for perceived movement

easiness, social acceptability, and walking compatibility. Logged

data is used to calculate relative changes from a normal walk in

terms of completion time, and positional and rotational changes.

4.1 Participants

We recruited 25 participants from mailing lists and word-of-mouth.

Their ages were 19 to 61 (m=26.6, sd=8.5), 11 identified as women

and 14 as men, and all but one said they were “right-footed”. Re-

garding walking frequency, they reported an average score of 3.8

(on a numeric 1 to 5 scale, with 1 “walk very little” and 5 “walk

very much”), and they estimated on average more than 5,800 steps

per day. Nine participants said they engage in activities involving

dexterous foot movements, such as soccer, taekwondo, and dancing.

Remuneration was $15. Our Research Ethics Board approved the

protocol and participants provided their written consent.
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4.2 Apparatus

The studywas conducted indoors using a 10-meter-long overground

walking path with a width of 1.2 meters (Figure 4a). This created

enough space to complete 5 to 6 strides (approximately a dozen

steps) at a normal walking pace. We did not use a treadmill since it

can introduce significant bio-mechanical differences compared to

overground walking [49].

Movement logs were captured using three wireless VIVE 6DOF

trackers (each 100ø × 42mm, 89g): two mounted on the participant’s

footwear using 3D printedmounts and a third attached to a provided

bicycle helmet (Figure 4b,c). Four VIVE 2.0 lighthouse receivers

covered the entire walking path volume. Additionally, an RGB

camera was placed at each end of the walking path to record walk

trials using a software-synchronized trigger. The study protocol and

data collection were implemented with Unity (version 2021.3.16f1).

4.3 Task

The task is to walk along the 10m path and perform the required

gesture in the next stride after a chime is played. Chimes are at

two virtual checkpoints (triggered when the helmet tracker passes),

creating two gesture repetitions per “walk”. When the participant

reached the end of the path, they turned around and, when ready,

waited for another audio cue before walking back to the start posi-

tion. As before, they performed the same gesture two more times as

they crossed the checkpoints in the return direction. This task was

then repeated with the other foot, creating 8 gesture stride data

segments per gesture (4 with each foot).

After they reached the end of the path, the experimenter in-

formed the participant to turn around with another system audio

cue. The participant then turned and walked back to the starting

point. During this returning walk, the same two checkpoints also

cued the participant to perform the gestures with the same foot.

4.4 Procedure

After attaching the trackers and donning the helmet, the partic-

ipant familiarized themselves with the task by practicing walks

with and without a randomly selected gesture. At all times, they

were instructed to use “their most comfortable walking speed”. Be-

fore each sequence of walks with a new gesture, the experimenter

described and demonstrated the gesture, and then the participant

practiced fitting the required gesture into their stride in the “most

comfortable manner”. During this time, they practiced the gesture

with both feet. When they were ready to do the recorded walk, the

experimenter informed them of the foot to use (left or right) for the

first out-and-back “walk”. After completing the required gesture

walks with both feet, the experimenter verbally collected subjec-

tive ratings in a post-gesture questionnaire, along with additional

comments and feedback. This was repeated for all 22 Gait Gestures.

A mandatory 3-minute break was taken every 5 gestures, but

the participant could rest between gesture walks whenever they

wished. The total session took approximately 1.5 hours, and al-

though walking at a comfortable pace was not fatiguing, the breaks

provided an additional measure of safety in this regard.

4.5 Design

This is a within-subjects design with the primary independent

variable gesture representing the 22 different walking gestures

introduced in Section 3 (i.e. big-step, brush, slow-step, etc.). In

addition, foot is a secondary independent variable with two vari-

ations (left vs. right). For each gesture and for each foot, the

participant completed two “walks” along the 10m path, repeating

the gesture two times per walk. The order for the gesturewas shuf-

fled for each user, and so was foot for each gesture. In summary:

22 gestures × 2 foot conditions × 4 repetitions = 176 gesture trials

per participant. Each participant also completed 2 walks with out

performing any gestures (referred to as normal). Not there is no

foot variation for normal.

The post-gesture questionnaire captures 3 subjective measures

using semantic differential anchoring in the form of continuous

numeric ratings between 1 and 7 with labelled poles:

• Movement Easiness: “How easy was it to perform the gesture

while walking?” (1 as “very hard”, 7 as “very easy”)

• Social Acceptance: “How would you feel performing this walking

gesture in a public space?” (1 as “very uncomfortable”, 7 as “very

comfortable”)

• Walking Compatibility: “How much did performing the gesture

change your normal walking movement?” (1 as “very much”, 7

as “very little”)

We also calculate objective metrics to characterize overall pat-

terns in the gestures. Using logs of the tracked feet and head, the

metrics are differences in each gesture from the participant’s nor-

mal walk in terms of Duration, Position, and Rotation. Relevant

to this analysis, each participant completed two logged normal

“walks” at their most comfortable speeds without performing any

gesture before the rest part of the study with other gestures.

5 RESULTS

We first present results for subjective ratings with a clustering

analysis to identify promising gestures, and then we describe the

data processing pipeline and computed objective characteristics.

Since there are 22 levels of gesture, we do not perform a statistical

analysis of differences (i.e. there are 231 pairs to compare). Instead,

we use descriptive statistics, confidence intervals, clustering, and

participant comments. Figure 5 provides a summary of both sets of

quantitative results.

5.1 Subjective Ratings

Movement Easiness. Examining the results (Figure 5a), regardless of

rotational or translational, gestures involving medial movement are

generally rated lower (harder to perform) than those with lateral

movement (e.g. tap-rotate-out vs. tap-rotate-in and tap-out

vs. tap-in). One participant commented that these almost feel like

“tripping yourself” [p8]. While fast-step is generally considered

socially acceptable and compatible with walking, many partici-

pants found it “exhausting” [p1, p12, p17, p25], resulting in a lower

movement easiness score.

Rotational movements are typically rated as more challenging

to perform, with the exception of tap-behind and heel which

received high ratings across all three aspects. Regarding dragging
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Figure 5: Study results for subjective ratings (a, b, c) and objective characteristics (d, e, f) by gesture, with normal for

comparison. Gestures are clustered by subjective ratings and ordered by Movement Easiness (green, white, and red colour bands

for high, middle, and low groups of gestures). Error bars are 95% CI.

motions, drag-behind scored better than drag-ahead. These re-

sults may reflect the difficulty of the action itself and how well each

of these foot actions align with the corresponding gait cycle phase.

Participants provide some insight, for example: “Tapping behind my

body was a bit confusing at first, but seems natural after I incorporate

it in my walk.” [p12], “compared to the behind one [drag-behind ],

this [drag-ahead ] seems to be weird” [p6].

Social Acceptability. The trend in results (Figure 5b) are closely

aligned with Movement Easiness. Notably, lateral rotations, swing-

out and tap-rotate-out, were mentioned by several participants

to be “socially inappropriate” [p4, p5, p6]. Moreover, for tap-out,

kick-out, and kick-in, participants expressed concerns about its

potential to disrupt pedestrians: “a sudden side-stepping would block

someone walking past you” [p20], “May look like tripping them inten-

tionally.” [p15], or “accidentally kick them in the body” [P7]. While

drag-behind and drag-ahead were generally viewed as socially

acceptable, participants noted they might “hurt their shoes” [p1, p12,

p22], making them reluctant to use these gestures.

Walking Compatibility. Even though certain gestures might be chal-

lenging to execute based on Movement Easiness, those predomi-

nantly involving tapping or stepping movements received high

ratings in Walking Compatibility (Figure 5c). As one participant

noted, “its movement [fast-step ] generally being the same as nor-

mal walking” [p8]. In contrast, all three gestures based on kicking

motions were rated lower because, as another participant pointed

out, “you need to pull your feet back after a kick to proceed with the

next step” [p14].

5.1.1 Clustering. As a high-level summary of subjective results,

we use clustering to identify groups of gestures that appear most

promising for regular use, those suited for infrequent commands,

and those that should be used with caution or avoided. K-means

clustering is used to find 4 groups (3 as explained above with one

more for normal) with feature vectors formed from all three subjec-

tive ratings: Movement Easiness, Social Acceptability, andWalking

Compatibility. Clusters were ranked based on their average Move-

ment Easiness ratings.

Figure 5 visualizes the results as three horizontal highlighted

bands of colour. The highest-rated cluster is light green with 7 ges-

tures: big-step, high-step, slow-step, brush, heel, tap-behind,

and bend-behind. The lowest-rated cluster is light red with 5 ges-

tures: kick-out, kick-in, tap-rotate-in, swing-out, swing-in.

There are 10 gestures in the middle-rated cluster, which is visual-

ized without any colour highlight. In general, the top cluster has

gestures that received high average scores across all three subjec-

tive criteria and the bottom cluster has gestures rated low in all

three aspects. The gestures in the mid-rated cluster are generally

are rated well in one or two of the subjective categories.

5.2 Gait Cycle Detection

To compute objective characteristics related to gesture duration and

movement, the logged tracker data was processed to identify gait
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cycles. The goal is to segment each “walk” in the study into a series

of right foot and left foot strides, then label strides that include a

gesture. After which, objective characteristics for Duration, Position,

and Rotation may be calculated relative to normal walking.

Three 6DOF trackers log the position and orientation of the head

and each foot each foot at ∼80 Hz. The tracking volume uses stan-

dard HTC Lighthouse coordinates where the position is measured

in metres and the 𝑌 axis is the floor plane normal. We manually

aligned the tracker on each foot to be along the shoe centre line

with the tracker’s 𝑍 axis facing the shoes’ forward.

Foot Strike Calibration. To account for variations in participant

height and shape of head and shoes, we performed a one-time

calibration to find the normal up-vector and translational offset

from the floor of each foot when flat on the floor. The participant

was instructed to face forward along the walking path (i.e. the 𝑍 -

axis direction) and place each foot on a specifically marked point.

The positional and angular offsets were recorded and used for

calibration. We refer to components of the 3D position as 𝑃𝑥 , 𝑃𝑦 ,

and 𝑃𝑧 and the components of the 3D rotation as Θ𝑥 , Θ𝑦 , and Θ𝑧 .

Step Normalization. To compensate for participants with differ-

ent step heights, we normalize their 𝑃𝑦 (vertical) positional data

(i.e. along the Y axis) using their individual maximum step height.

The normalized 𝑃𝑦 values are used to compute vertical acceleration,

essential for estimating height changes during walking and for

identifying specific events in the gait cycle, such as heel strikes.

Note that for analysis, we set 𝑃𝑧 to zero at the beginning of each

stride and use relative increasing values during the stride.

Direction Normalization and Calibration. Recall the participant

first walked along the path to the end position, then turned around

and walked back along the same path. All data from the return walk

is rotated 180
◦
around the 𝑌 axis to normalize the overall walking

direction. Since participants make small deviations from the ideal

centre line of the walking path, we also adjust position data. For

each trial, the mean direction of movement is calculated as the

vector from the starting and ending head positions projected to 2D

points on the floor. This overall direction vector is used to rotate

the positional data around the 𝑌 axis to align with the walking path

centre line (i.e. the tracking volume𝑍 axis). 𝑃𝑥 values perpendicular

to the walking path are preprocessed relative to the head 𝑋 -axis

positional movement.

Noise Removal. When walking, unexpected body vibrations can

cause higher-frequency noise in sensor readings. Previous studies

have suggested that low-pass filters typically have cutoff frequen-

cies between 0.9 and 3Hz for the normal walking pace [17, 21]. How-

ever, we found 3 Hz blurred differences between gesture strides and

normal strides, leading to incorrect stride segmentation. Through

experimentation, we found an 8 Hz low-pass zero-lag Butterworth

filter adequately removed high-frequency noise from the linear

acceleration signal without removing characteristic movements of

normal and gesture strides (Figure 6a).

Stride Detection. A stride is delineated by heel-to-ground strikes,

these strikes can be identified by local minimums in the forward

acceleration signal (𝑃 ′′𝑧 ), see Figure 6b. A sliding window algorithm
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Figure 6: Gait cycle detection example using a left foot

bend-behind walking segment by p22: (a) raw and filtered

𝑃 ′′𝑧 ; (b) foot strike and stride segmentation of 𝑃 ′′𝑧 with green

vertical lines delimiting each stride, strides shaded green are

gesture strides manually labeled using synchronized video.

was employed to detect these events and define one step as the in-

terval between two consecutive heel strikes. We specifically utilize

Mueen’s Algorithm for Similarity Search (MASS) to compute the

distance profile [33]. This involves comparing the matrix profile

of the normal stride as the query pattern with the matrix profile

for the sub-sequence of the acceleration of 𝑃𝑧 to identify similar

patterns. The matrix profile is a vector that stores the 𝑍 -normalized

Euclidean distance between any sub-sequence within a time series

and its nearest neighbour [1]. This approach facilitates the accurate

detection of patterns in the time series data.

Labelling Gesture Stride. Using the time markers from the seg-

mented gait cycle, we created a simple annotation tool to play

corresponding video segments of the participant as captured by

the two webcams. Each stride is manually classified as including a

specific “gesture” or just “normal” walking.

Tominimize ambiguity, if any stride is visually hard to determine,

we analyze variances in gait dynamics. These are deviations in the

signal preceding or succeeding the "M" shape (as shown in Figure 6

with a green background), alongside positional data and the logged

timing of participants passing checkpoints. A total of 4,400 gesture

strides were annotated (176 strides × 25 participants).

5.3 Objective Characteristics

With the segmented and labelled strides, the objective characteris-

tics are computed. Each is a proportional ratio, for example, click

stride duration over normal stride duration for the participant.

Recall the normal stride was recorded at the start of the session.

Examining the duration data, big-step and small-step have the

longest average duration, in contrast to fast-step, which has the

shortest. A participant commented on small-step saying “It de-

mands additional focus and energy to ensure the step is taken with less

distance” [P13]. Unexpectedly, slow-step exhibited only a marginal

increase in duration compared to normal. However, participants

confirmed that “these indeed feel like longer time durations” [P13].
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Aside from big-step, gestures that received high ratings for

Movement Easiness exhibited only slight differences in duration

compared to normal, including high-step, brush, and heel. Sim-

ilarly, gestures that scored well in Walking Compatibility have

minimal rotational deviation from normal. Considering positional

variations from the normal stride are noticeable in nearly all ges-

tures, these findings might suggest that participants find positional

changes more acceptable in their subjective experience of these

gestures compared to rotational adjustments. Overall, the top clus-

ter of gestures also have small deviations from normal in terms of

objective characteristics.

6 INTERACTION DESIGN PROTOTYPE

To illustrate how Gait Gestures can be used as input, we created a

proof-of-concept interaction design for an AR headset application.

The interface covers simple mobile tasks while walking, like re-

ceiving a phone call, controlling a music player, and ordering food,

along with general functions like activation and adjusting system

settings like volume or brightness. We use aWizard-of-Oz approach

for gesture recognition to simplify development and focus only on

interaction design. This also avoids recognition quality confounds

in a usability evaluation we conduct with the prototype.

6.1 Gesture to Interaction Mapping

The design uses seven gestures that participants rated well in the

previous study for walking compatibility, easiness, and social ac-

ceptability (i.e. all gestures in the highest cluster). Each is mapped to

one or more functions that either trigger a global system command

or, together with other gestures, define a higher-level interface wid-

get with associated interactions. The chosen gesture-to-function

mappings mainly consider the expected frequency of use (e.g. bend-

behind mapped to “home” function) and semantic compatibility

(e.g. left-foot gesture triggering the button on the left). We use a

few simple “widgets” instead of more complex and specific task

interfaces requiring a larger gesture set. This makes the interac-

tion more consistent, simple, and scalable. These widgets prioritize

compatibility with walking, even if task interactions take longer.

Walking already consumes time, so this can be acceptable.

Global commands include a high-step gesture to ‘activate’ the

system, a slow-step to ‘deactivate‘, a tap-behind to return to the

previous screen in an app, a bend-behind to return the system

home screen, and a big-step gesture for a global "option" to trigger

the settings or options menu whenever available..

Several tasks use interactions with a List widget to select an

item from a collection of items (Figure 7). Each item is represented

as a small thumbnail image or icon, possibly with a 1 to 3-word

description. Our prototype uses a List to open an app from the

system home screen, choose an artist or playlist in the music app,

and select a dish or beverage in the food ordering app. The List

interaction exploits the pace of walking, with a new item side-

scrolling into a central box every two strides. When the desired

item is in the central box, a brush gesture selects it. If needed, a

high-step pauses the scrolling to allow time to think about the

item before committing, or to pause the interaction to focus on

walking (e.g. to cross a street).

Figure 7: List widget example: (a) items scroll right-to-left

as the user takes normal steps; (b) a brush gesture selects

the current central item, in this example the music app, then

a new List widget appears with a list of playlists. To allow

time to think or navigate a real world obstacle, a high-step

temporarily freezes scrolling.

A Menu widget is used to choose among a small number of op-

tions in a non-linear manner (Figure 8). After the Menu is invoked,

all options are displayed as icons in a horizontal row. The display

presents symmetrical left and right foot options around a central

item that is most commonly accessed. Our prototype uses a 5-option

Menu where the central option is selected with a brush, the options

immediately on either side of centre with a left heel and right heel,

and the outermost options with a left big-step and right big-step.

Figure 8: Menuwidget example: (a) five options with a central

play/pause option mapped to brush; (b) a right heel picks

the right-of-center option, skipping to the next track in this

music app example.

A Slider widget (Figure 9) is used to control numeric parameters

like brightness, volume, and quantity. Users activate an decrease or

increase mode using a left or right big-step respectively. Once a
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mode is selected, subsequent normal steps adjust the value accord-

ingly. The global tap-behind command can also be used to exit the

adjustment mode.

Figure 9: Slider widget example for volume adjustment: (a) a

visualization of the current volume is shown with left and

right options to “-” decrease or “+” increase; (b) using a right

big-step activates increase mode, after which normal steps

increases the volume.

6.2 “Walk”-through

To demonstrate how Gait Gesture input could enable AR interac-

tions in context, we present a usage scenario of a user wearing AR

glasses on their way to work:

Jay is on their usual 15-minute walk to work. As they head down the

sidewalk, they use a slow-step to ‘activate’ the system. The system

powers on, and presents a List of apps that slowly scrolls by with a

new item entering a central box every two steps. Jay waits for the

music app as they walk, then selects it with a brush. This opens

another List with the same scrolling interaction for Jay to choose

a playlist. Once selected, Jay adjusts the volume using a Slider in

which he uses a big-step with his right foot to switch to increase

mode, and takes 3 normal steps to increase the volume by three

levels. With music playing, Jay uses a slow-step to deactivate the

system and continue their walk.

A bit later, Jay decides to order a coffee at a shop a few blocks ahead.

They activate the system again with a slow-step and the last app

(music) is shown by default. They use a bend-behind to return to

the home screen, then use a series of List interactions to select the

food ordering app and the coffee shop. As they use another List to

select a beverage, they approach a street and use a high-step to

pause the system. After safely crossing, they use a high-step to

resume the List to select a latte. A Menu of size options is shown,

and Jay uses a big-step with their right foot to choose extra-large

(they feel tired from a late night). A brush confirms the order and

Jay looks forward to picking it up as they pass the coffee shop in a

few minutes.

As they approach the office, there is an incoming call from a colleague

at work. Rather than talk, Jay uses a tap-behind to decline, which

also activates the system with a Menu of common text messages to

send. Jay chooses “be there soon” with List interactions ended by a

brush, and the system deactivates again.

Note that these interactions unfold relatively slowly and in sync

with Jay’s walk. Some of them could happen over a whole block,

like choosing a playlist and ordering coffee. However, in the context

of Jay’s long walk, these represent a relatively small amount of time.

Importantly, they did not need to stop to perform these interactions,

and they are already spending the time walking anyway.

6.3 System Implementation

The interactions described above are implemented in a prototype

system in Unity that runs un-tethered on a Quest Pro headset in

AR pass-through mode. Wizard-of-Oz gesture recognition is accom-

plished using socket communication with a Python application run-

ning on a laptop. A study facilitator walks alongside and manually

sends events to the headset when they observe the user performing

a gesture.

6.4 Usability Evaluation

To gain a general understanding of the usability of Gait Gestures

in an application context, we conducted a small usability study

with 8 people using the prototype interface and system. There

was no overlap with participants in the main study. The study

was conducted inside a large building along hallways that formed

an approximately 170m path in a mostly rectangular circuit. The

hallways were approximately 3metres wide and free of obstructions

with few encounters with other people.

6.4.1 Procedure. The experimenter introduced the seven Gait Ges-

tures to the participant with diagrams and demonstrations. The re-

lationship between gestures and system interactions was explained,

and then the participant performed each gesture themselves. Af-

terward, they donned the headset and started the walk-through

without practice. The gestures performed (including normal steps)

were recorded by the experimenter and logged by the system.

The specific tasks were: (1) play a song; (2) adjust the volume;

(3) order a latte beverage; and (4) decline or accept an incoming

call. This required using all seven Gait Gestures, either for global

commands or to interact with the three widgets. Many commands

and widgets had to be used multiple times.

The entire walking session, including demonstrations, took ap-

proximately 5 minutes. Afterward, the participant answered a ques-

tionnaire, with 7-point numeric continuous scale ratings of overall

easiness, satisfaction, and gesture-command compatibility, along

with standard NASA-TLX and SUS. After, the experimenter con-

ducted a short semi-structured interview (see Appendix B.1 for

questionnaire and interview questions).

6.4.2 Results. Most participants used the full 170m circuit to com-

plete the tasks, starting and ending near the same place. On average,

they spent 238s and executed 43.1 Gait Gestures. For comparison,

walking 170m at a typical walking speed of 4.8km/h is 228s.

Overall, users responded positively to the system. On gesture

easiness: “How easy was it to perform the gestures while walking?”

(1 very hard -7 very easy) participants reported an average of 6.1

(sd=0.1). On overall satisfaction: “I would like to use it for inter-

action while walking in the future” (1 very little - 7 very much)

they reported an average 6.9 (sd=0.2). On function compatibility:

“I would like to use it for interaction while walking in the future” (1

very little - 7 very much) they reported an average of 5.8 (sd=0.2).

Regarding NASA-TLX and SUS (Figure 10), TLX values suggest

some temporal demand (whichwe believe is from learning to choose
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Figure 10: Usability test results for NASA-TLX and SUS

and timing the gestures), but overall scores are reasonable. The

overall SUS score is 75.9, suggesting "good" [6].

During the experiment and in the interview, participant com-

ments suggested the tasks were “easy to perform and intuitive” [P3],

and “seems most of the time it only requires normal walking, the input

is not hard at all.” [p5]. However, participants also provide sugges-

tions to improve further the interaction design: “I think similar to

the slider, the list that scrolls with my strides should have a return

button, too” [p4], and “the scrolling speed could be even faster for a

longer list, or let me switch to a fast-scrolling mode.” [p7] While these

recommendations could improve the system further, the current

result indicates the feasibility of using Gait Gestures in practice.

7 PROOF-OF-CONCEPT RECOGNIZER

The interaction prototype and usability evaluation suggest Gait

Gesture input can be used to accomplish tasks while walking. To

evaluate one aspect of technical feasibility, we built a recognizer and

tested it offline using data from the main study. The approach builds

on the gait cycle identification described earlier. Gait information

like segmented strides are used to construct high-level features,

and these features are used in a Random Forest Classifier.

7.1 Data Preparation and Feature Generation

The dataset is 6DOF (position and rotation) time series from the

two foot trackers and the head logged at 80 Hz. It is segmented

by “walk” and gesture type (or normal walking), then segmented

into right and left foot strides using the gait cycle segmentation

described earlier.

Some features are calculated using relative differences in the

normal stride and a gesture stride per participant. Dynamic Time

Warping (DTW) distance is used to align the time series for each

stride to enable this calculation. Standard low-level features such as

mean, standard deviation, maximum, minimum, range, and median

are calculated per stride, along with accumulated changes and

differences using the aligned normal stride segment. Additionally,

higher-level features are calculated, for example: the portion of time

above the ground; the portion of time where movement is above

average; the relative segment time when the largest movement

occurred; the time taken from the largest movement to the average;

whether both feet touch each other; the length of the stance phase

(the time the foot is fixed on the ground); the portion of time the

foot halts in midair; and the rotation acceleration when the foot

touching the ground. All low-level and higher-level features used

in the Random Forest classifier are in Appendix Table 2.

7.2 Training and Results

This dataset of features is normalized using the Standard Scaler

method to ensure uniformity in distribution, then divided into 70%

training and 30% test sets (the random state used for splitting the

data was 42). Optimal hyperparameters for the Random Forest

classifier were determined using the GridSearchCV method with

an exhaustive search over specified parameter values. The model

was trained using the best hyperparameters and performance was

evaluated on the 30% held out test set for overall accuracy, precision,

and recall.

The overall accuracy of 92% is with precision and recall metrics

both 0.92, indicating a well-performing model that balances false

positives and false negatives effectively. The confusion matrix (Fig-

ure 11) shows that all gestures are recognized at similar levels, with

no significant pattern of misclassification between gestures or with

normal walking.

We also evaluate themodel through a user-based cross-validation

approach via LeavePGroupsOut, which leaves out data from seven

participants in each fold. Across all participants, the average accu-

racy is 0.89 ± 0.13 (95% CI) with precision 0.91 ± 0.10 and recall

0.89 ± 0.13. This indicates a robust performance across different

users. Detailed statistics are provided in Appendix A.1.
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Figure 11: Recognizer confusion matrix

These are encouraging results with a relatively simple recognizer.

However, it is important to note that while our model shows high

accuracy, it is built on a balanced dataset and its performance in

real-world scenarios may differ significantly if the distribution of

gestures varies greatly from the training data.
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8 DISCUSSION

In this section, we reflect on different aspects of Gait Gestures,

suggest possible future work, and identify limitations.

Gait gestures are tied to the cadence of walking, so the cumula-

tive time to complete a task with multiple gestures will be slower

than equivalent interactions with conventional input like touch-

screens. However, performing a single gait gesture does not appre-

ciably increase stride time from normal walking. Our results suggest

a Gait Gesture adds approximately 100 ms to normal stride time,

which is less than the additional time to perform pinch gestures

while walking [59]. Moreover, performing a single gait gesture is

comparable to gaze dwell or saccade selection times, which take

700 ms and 300 ms respectively [26].

People adapt their walking gait according to their surroundings,

consider reducing pace before crossing a street, stepping to the

side to avoid an obstacle, and stepping over a puddle. We did not

test these kinds of variations, but the inclusion of slow-step as a

global command to turn the system on or off is an explicit way to

avoid potential false positives. Another global command that would

mitigate false positives after they occur is a global “undo” function

mapped to another gesture. Perhaps using drag-behind from the

middle cluster given the semantic association with “erasing behind”.

Future work could gather data with more variations of walking and

examine how these affect Gait Gesture recognition.

There are also natural variations in gait between different people.

Our proof-of-concept recognizer performed well even when subsets

of our participants were left out as a test set. However, we did not

explicitly recruit participants with highly varied walking gaits, for

example due to walking style, dexterity, or stride length, nor did we

test with different footwear, like heeled dress shoes or industrial

safety boots. An individual’s previous experience with foot-related

activities in particular may have an affect. For example, p17 has

significant dance training and p20 is an avid soccer player. They

both expressed preferences for specific gestures that seem to be

influenced by their background. Notably, p17 expressed a strong

preferences for brush which is related to tap dancing, and p20

favoured kick-in. A future Gait Gesture system could include the

ability to re-map gestures to match such individual preferences.

Additional information about how Gait Gestures are performed

could be used for input. For example, gestures like big-step and

slow-step could be expanded to include continuous variations

like how much bigger or how much slower the step is. This could

be leveraged as an advanced level of continuous input modality,

such as setting the volume based on increased stride length with

big-step, or using the relative increase in duration in slow-step

for item selection. This kind of overloading of discrete gestural

actions has parallels to Liao et al.’s dwell variation input technique

[29]. Further research into these kinds of continuous variations is

needed need to understand usability limits and suitability, as well

as sensing and recognition approaches.

Our formative study used highly accurate VIVE 6DoF absolute

position trackers. To collect comparable data in the wild and to

conduct an expanded usability with a fully implemented recognition

system, a fully portable foot-mounted tracking system is required.

A straightforward solution is to adapt existing 6DoF trackers using

inside-out or SLAM tracking. For example, we experimented with

mounting a Quest Touch Pro controller on each show. Initial results

are promising for the purpose of running a study or gathering

data, but of course not practical for real deployment. The VIVE

portable full-body Ultimate Tracker provides similar functionality

and would likely be less cumbersome.

For practical deployment, we imagine two different approaches.

Our stride detection relies on acceleration data, so IMU sensors

mounted in shoes could be a feasible tracking solutions. This ap-

proach has been used in foot gesture sensing before [58]. To avoid

instrumenting shoes, an approach using head-mounted or body-

mounted cameras for ego-centric body tracking [16, 30, 43, 52, 55]

may soon be compact and robust enough for commercial deploy-

ment of a Gait Gesture device.

8.1 Limitations

Our study primarily used a single short, straight, flat path. As

discussed above, walking style can change based on surroundings.

Particular variations, such as hills or curves, will influence the gait

cycle. This, in turn, likely alters the perceived subjective experience

of performing gestures. Relying on our prototype’s global on-and-

off gesture could simply restrict Gait Gesture use for straight, flat

paths. However, some gestures may be more suited to different

kinds of terrain. For example, swing-out may be easier to perform

and more natural to execute when turning a corner.

Regarding the gesture recognizer, our current dataset is based on

gestures performed four times each in repeated sessions. Introduc-

ing a fully random order could add more variability. Additionally,

since our 𝑃𝑥 (lateral) preprocessing is relative to the head’s x-axis

movement, it may be affected by arbitrary head movements in prac-

tical applications. Despite these potential improvements that could

be made, the recognizer performs well across diverse movements

from different participants.

Regarding learnability, our initial usability study suggests people

can effectively process and recall the 7 top-rated gestures imple-

mented in our prototype. This aligns with Miller’s “Magic Number

7 ± 2” principle [32]. However, challenges may arise if future in-

teraction designers require more functions, such as discriminating

global commands by foot, which could introduce additional cog-

nitive resources to discover and remember. We acknowledge that

overloading users with too much feedback or abrupt changes with-

out a gradual introduction might lead to confusion. To counteract

this, we displayed gesture names alongside Menu options in our

prototype (Figure 8), in line with how some desktop applications

present keyboard shortcuts. Amore advanced learning strategy is to

show in-situ gesture demonstrations next to the menu buttons [11].

9 CONCLUSION

We presented an investigation of deliberate deviations from a walk-

ing gait to serve as mobile AR input commands, all while maintain-

ing the natural flow of walking. We believe the concept of Gait

Gestures also demonstrates more generally how computer input

can be integrated into an existing primary motor task, but with the

goal of compatibility, not necessarily absolute efficiency.
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A RECOGNIZER

A.1 Additional Recognizer Results

Table 1: Additional Recognizer Test Results

Precision Recall F1-Score Support

normal 0.77 0.93 0.84 43

big-step 0.89 0.93 0.91 55

high-step 0.92 0.92 0.92 48

slow-step 0.93 0.87 0.90 46

brush 1.00 0.96 0.98 47

heel 0.88 0.88 0.88 52

tap-behind 1.00 0.98 0.99 53

bend-behind 1.00 0.90 0.95 49

Accuracy 0.92 393

Macro Avg. 0.92 0.92 0.92 393

Weighted Avg. 0.93 0.92 0.92 393

A.2 Features Selected

Table 2: Recognizer features

Description Methods Attributes

The portion of the time movement is above zero Computes the mean of the times where the pos_z_a attribute

is greater than zero.

pos_z_a

The portion of the time movement is above average Computes the mean of the times where the pos_y attribute is

greater than its average.

pos_y

Moving average of pos_z Computes the mean of the rolling window (size: 10) of the

pos_z attribute.

pos_z

The position of pos_z moves from start to end Subtracts the first element of the pos_z attribute from the last

element.

pos_z

The portion of the time when the first peak of ang_x shows Finds the first peak of the ang_x attribute and divides it by the

length of the data.

ang_x

Time from the highest peak of ang_x to next 0 after that peak Identifies the highest peak of ang_x and finds the time from

there to the next zero, divided by the total time length.

ang_x

Number of peaks in pos_z_a Counts the number of peaks in the pos_z_a attribute. pos_z_a

Number of times pos_z_a crosses zero Counts the number of times pos_z_a changes its sign from

positive to negative or vice versa.

pos_z_a

Distance from peak to valley in pos_z_a Compute the difference between the maximum and minimum

values of the pos_z_a attribute.

pos_z_a

The amount of two feet touch in pos_z_a Compute the pos_x the find collision between right and left

foot attribute.

pos_x

Rotation acceleration after touching ground Compute the angular movement acceleration when pos_z is 0

(on the ground)

angular_movement
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B USABILITY EVALUATION SUPPLEMENTARY

B.1 Questionnairre

Table 3: Questionnairre used for evaluating interaction design prototype

Category Question

Gesture Easiness How easy was it to perform the gestures while walking? (1 very hard - 7 very easy, continuous scale)

Overall Satisfaction How compatible were gestures with the system functions and commands in general? (1 very weird - 7 very matched,

continuous scale)

Function Compatibility I would like to use it for interaction with HMD while walking in the future. (1 very little - 7 very much, continuous

scale)

NASA-TLX

Mental loading How mentally demanding was the task? (1 very low - 21 very high, continuous scale)

Physical Demand How physically demanding was the task? (1 very low - 21 very high, continuous scale)

Temporal Demand How hurried or rushed was the pace of the task? (1 very low - 21 very high, continuous scale)

Performance How successful were you in accomplishing what you were asked to do? (1 Perfect - 21 Failure, continuous scale)

Effort How hard did you have to work to accomplish your level of performance? (1 very low - 21 very high, continuous

scale)

Frustration How insecure, discouraged, irritated, stressed, and annoyed were you? (1 very low - 21 very high, continuous scale)

SUS (5-point Likert scale)

Q1 I think that I would like to use this system frequently while walking with HMD.

Q2 I found the system unnecessarily complex.

Q3 I thought the system was easy to use.

Q4 I think that I would need the support of a technical person to be able to use this system.

Q5 I found the various functions in the system were well integrated.

Q6 I thought there was too much inconsistency in this system.

Q7 I imagine that most people would learn to use this system very quickly.

Q8 I found the system very awkward to use.

Q9 I felt very confident using the system.

Q10 I needed to learn a lot of things before I could get going with this system.
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